Moufang symmetry II. Moufang-Mal’tsev pairs and triality
نویسنده
چکیده
A concept of the Moufang-Malt’tsev pair is elaborated. This concept is based on the generalized Maurer-Cartan equations of a local analytic Moufang loop. Triality can be seen as a fundamental property of such pairs. Based on triality, the Yamagutian is constructed. Properties of the Yamagutian are studied. 2000 MSC: 17D10
منابع مشابه
Moufang symmetry VI. Reductivity and hidden associativity in Mal’tsev algebras
Reductivity in the Ma’tsev algebras is inquired. This property relates the Mal’tsev algebras to the general Lie triple systems. 2000 MSC: 20N05, 17D10
متن کاملMoufang symmetry VII. Moufang transformations
Concept of a birepresentation for the Moufang loops is elaborated. 2000 MSC: 20N05
متن کاملHopf Algebras with Triality
In this paper we revisit and extend the constructions of Glauberman and Doro on groups with triality and Moufang loops to Hopf algebras. We prove that the universal enveloping algebra of any Lie algebra with triality is a Hopf algebra with triality. This allows us to give a new construction of the universal enveloping algebras of Malcev algebras. Our work relies on the approach of Grishkov and ...
متن کاملProper Moufang Sets with Abelian Root Groups Are Special
Moufang sets are the Moufang buildings of rank one. They were introduced by J. Tits [T1] as a tool for studying algebraic groups of relative rank one. They are essentially equivalent to split BN -pairs of rank one, and as such they have been studied extensively. In some sense they are the basic ‘building blocks’ of all split BN -pairs. In the finite case, it had been a major project to classify...
متن کاملMoufang symmetry XII. Reductivity and hidden associativity of infinitesimal Moufang transformations
It is shown how integrability of the generalized Lie equations of continous Moufang transformatiosn is related to the reductivity conditions and Sagle-Yamaguti identity. 2000 MSC: 20N05, 17D10
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008